Coefficients de Fresnel:


Deux milieux diélectriques, transparents et non absorbants d'indices n_1 et n_2 sont séparés par un plan z=0.

Une onde progressive plane monochromatique polarisée rectilignement (onde incidente) tombe sur le dioptre sous un angle d'incidence nul et y engendre une onde réfléchie et une onde transmise. Les champs électriques sont en notation complexe :

$$\underline{\overrightarrow{E}}_{1} = E_{0}e^{i(\omega t + k_{1}z)} \overrightarrow{u}_{x}$$

$$\underline{\overrightarrow{E}}_{1}' = \underline{r}E_{0}e^{i(\omega t - k_{1}z)} \overrightarrow{u}_{x}$$

$$\underline{\overrightarrow{E}}_{2} = \underline{t}E_{0}e^{i(\omega t + k_{2}z)} \overrightarrow{u}_{x}$$

1. Coefficients de réflexion et de transmission du champ \overrightarrow{E} :

- (a) Quelles sont les expressions des champs magnétiques $\overrightarrow{\underline{B}}_1$, $\overrightarrow{\underline{B'}}_1$ et $\overrightarrow{\underline{B}}_2$ associés aux trois ondes.
- (b) Déterminer les coefficients \underline{r} et \underline{t} en fonction des indices n_1 et n_2 . Commentaire.

2. Aspect énergétique:

Dans un milieu non magnétique, l'expression du vecteur de Poynting demeure inchangée.

(a) Pour une onde se propageant dans la direction \overrightarrow{u} , exprimer le vecteur de Poynting en fonction du seul champ électrique et en déduire sa valeur moyenne $<\overrightarrow{\Pi}>$.

- (b) Calculer les puissance $\langle dP_1 \rangle$, $\langle dP'_1 \rangle$ et $\langle dP_2 \rangle$ rayonnées à travers une surface dS par les trois ondes et en déduire l'expression des facteurs de réflexion R et de transmission T en énergie.
- (c) Que vallent R et T pour l'interface air/verre.
- (d) Comment se traduit la conservation du flux d'énergie à la traversée du dioptre?

3. Application à une lame :

Une lame à faces parallèles d'indice n_2 est placée de part et d'autre dans un milieu d'indice n_1 .

- (a) Exprimer le coefficient r_{12} (réflexion de 2 sur 1) en fonction de r_{21} (réflexion de 1 sur 2). Exprimer de même t_{12} en fonction de t_{21} . Que constate t-on pour les expressions de R et de T.
- (b) Un rayon incident d'intensité I_0 sur une lame dont les fluctuations d'épaisseur Δe sont grandes par rapport à la longueur d'onde donne une infinité de rayons réfléchis et transmis.
 - Quelles sont les fractions d'énergie globalement réfléchie et transmise par la lame en fonction de R. Application numérique pour une vitre ordinaire (non absorbante).
 - Ce résultat reste-t-il vrai pour une bonne lame à faces parallèles ($\Delta e < \lambda/10$) comme la cavité d'un interféromètre de Fabry-Perot?